Adaptive evolution of a novel Drosophila lectin induced by parasitic wasp attack.

نویسندگان

  • Erin S Keebaugh
  • Todd A Schlenke
چکیده

Drosophila melanogaster has long been used as a model for the molecular genetics of innate immunity. Such work has uncovered several immune receptors that recognize bacterial and fungal pathogens by binding unique components of their cell walls and membranes. Drosophila also act as hosts to metazoan pathogens such as parasitic wasps, which can infect a majority of individuals in natural populations, but many aspects of their immune responses against these more closely related pathogens are poorly understood. Here, we present data describing the transcriptional induction and molecular evolution of a candidate Drosophila anti-wasp immunity gene, lectin-24A. Lectin-24A has a secretion signal sequence and its lectin domain suggests a function in sugar group binding. Transcript levels of lectin-24A were induced significantly stronger and faster following wasp attack than following wounding or bacterial infection, demonstrating lectin-24A is not a general stress response or defense response gene but is instead part of a specific response against wasps. The major site of lectin-24A transcript production is the fat body, the main humoral immune tissue of flies. Interestingly, lectin-24A is a new gene of the D. melanogaster/Drosophila simulans clade, displaying very little homology to any other Drosophila lectins. Population genetic analyses of lectin-24A DNA sequence data from African and North American populations of D. melanogaster and D. simulans revealed gene length polymorphisms segregating at high frequencies as well as strong evidence of repeated and recent selective sweeps. Thus, lectin-24A is a rapidly evolving new gene that has seemingly developed functional importance for fly resistance against infection by parasitic wasps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generality of toxins in defensive symbiosis: Ribosome-inactivating proteins and defense against parasitic wasps in Drosophila

While it has become increasingly clear that multicellular organisms often harbor microbial symbionts that protect their hosts against natural enemies, the mechanistic underpinnings underlying most defensive symbioses are largely unknown. Spiroplasma bacteria are widespread associates of terrestrial arthropods, and include strains that protect diverse Drosophila flies against parasitic wasps and...

متن کامل

An introduction to parasitic wasps of Drosophila and the antiparasite immune response.

Most known parasitoid wasp species attack the larval or pupal stages of Drosophila. While Trichopria drosophilae infect the pupal stages of the host (Fig. 1A-C), females of the genus Leptopilina (Fig. 1D, 1F, 1G) and Ganaspis (Fig. 1E) attack the larval stages. We use these parasites to study the molecular basis of a biological arms race. Parasitic wasps have tremendous value as biocontrol agen...

متن کامل

Rapid spread of the defensive endosymbiont Spiroplasma in Drosophila hydei under high parasitoid wasp pressure.

Maternally transmitted endosymbionts of insects are ubiquitous in nature and play diverse roles in the ecology and evolution of their hosts. To persist in host lineages, many symbionts manipulate host reproduction to their advantage (e.g. cytoplasmic incompatibility and male-killing), or confer fitness benefits to their hosts (e.g. metabolic provisioning and defense against natural enemies). Re...

متن کامل

Larval Defense against Attack from Parasitoid Wasps Requires Nociceptive Neurons

Parasitoid wasps are a fierce predator of Drosophila larvae. Female Leptopilina boulardi (LB) wasps use a sharp ovipositor to inject eggs into the bodies of Drosophila melanogaster larvae. The wasp then eats the Drosophila larva alive from the inside, and an adult wasp ecloses from the Drosophila pupal case instead of a fly. However, the Drosophila larvae are not defenseless as they may resist ...

متن کامل

Polyembryony in parasitic wasps: evolution of a novel mode of development.

Major developmental innovations have been associated with adaptive radiations that have allowed particular groups of organisms to occupy empty ecospace. Well-known developmental novelties associated with the conquest of new habitats include the evolution of the tetrapode limb, allowing the radiation of vertebrates into a terrestrial habitat, and formation of insect wings that permitted their di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 29 2  شماره 

صفحات  -

تاریخ انتشار 2012